OK
The Universal Selection Source:
Adhesives Ingredients
Industry News

Researchers Develop Octopus-inspired Wet-tolerant Adhesive

Published on 2017-06-19. Author : SpecialChem

A team of researchers at Sungkyunkwan University in South Korea has developed a type of adhesive patch that works under a variety of conditions including underwater. In their recently published paper, the team describes how they studied octopus suction cups to design a better patch for human applications.


Octopus Inspired Wet-tolerant Adhesive
Octopus Inspired Wet-tolerant Adhesive

Suction Cups to Grip Objects


In their search to create a better adhesive patch, the researchers looked to suction cups used by octopuses to grip objects and prey. They mimicked the suction cups by creating polymer sheets with cup-like dimples with soft spheres in the middle of each. They then tested differently sized dimples and spheres and found that 50 micrometer dimples offered the best grip, which, as it turned out, was the one closest to that used by an octopus in its underwater world. To better understand how the suction cups worked, the researchers studied their own creations under a microscope and discovered the secret to the octopus grip is water getting trapped beneath the sphere near the back edges of the cup—it creates a vacuum chamber when pressure is released.

Adhesive Patch Works under Water


In testing the patches, the researchers found them able to attach and detach up to 1000 times without the need for replenishment—and without the need for adhesive materials. This, the team notes, makes them a much better option for skin patches as anyone who has used an adhesive patch can attest. Removing sticky patches can be painful, particularly if they have been used to cover a wound. The researchers report also that the patch could adhere to many surfaces, both flat and curved, including skin. And of course, it stuck just as well when the skin was wet. Perhaps most interesting was the fact that the vacuum also allowed the suction cup to work underwater.

The patches the group made were simple rectangular sheets of dimpled plastic with tiny spheres in the middle of each, anchored to the sheet. The patches adhered when pressure was applied. Of course, for the patch to be used in medical or industrial applications a means for releasing the pressure created by the vacuum must be found, perhaps one based on the way an octopus releases its grip.

PS: If you liked this News, you might enjoy our Adhesives Industry Newsletter. All the Industry News delivered once a week right to your inbox. Sign up here!


Source: Sungkyunkwan University in South Korea
FEICA 2018 European Adhesive and Sealant Conference and EXPO
Channel Alerts

Receive weekly digests on hot topics

Back to Top